BREADS & BREAD MAKING
BREAD
The invention of leavened bread is attributed
to the Egyptians. The Greeks baked on grids in an oven like stricture. Romans
cooked their bread is household ovens made of brick and earth. It was in the
Middle Ages that the bakery trade began to develop, bread became very varied
and many different kinds of bread were produced.
Definition: Bread is food made from flour and water dough with yeast,
which is fermented, kneaded and baked in the oven. The action of yeast gives bread
its characteristic texture and flavour.
Bread is the only food, which, like wine, is
present on the table from start to finish of any meal; bread constitutes the
traditional accompaniment to all dishes. It is also the basic ingredient in
sandwiches, canapés, toasts, croutons & breadcrumbs. In addition to this it
is used widely in the preparations of the other dishes like, soups, gazpacho
& garlic soup, panadas, stuffing‘s & forcemeats, timbales, charlottes
& pudding and even in sauces. Good bread must have a crisp crust, an
attractive golden colour and as soft crumb. Growing state to quickly is a sign
of bad quality. Most bread should be served fresh but not hot. A daily intake
of 300 gms provides 125gms carbohydrates 25gms proteins, 2 gms fat calcium,
phosphorus, magnesium potassium and it gives 750 calories.
The baking/making of bread comprises of 3 main
operations kneading fermentation and baking.
The following ingredients are necessary for
bread making
1. Maida
2. Yeast
3. Sugar
4. Fat
5. Salt
Refined flour or Maida
Only strong and not weak flour is used for
making bread. Strong flour has reference to the character of flour. Wheat flour
contains both soluble and insoluble proteins. Proteins along with other
components join when water is added. When this occurs, two of the insoluble
proteins namely glutenin and gliadin join in the presence of water forming a
tough, somewhat rubbery material called gluten. Glutenin gives solidity to the
product whilst gliadin is the binding imparting the soft, sticky character to
gluten. The gluten of strong flour is tough, resists extension is capable of
withstanding prolonged periods of fermentation without breaking down producing
good loafs. Flour containing such gluten is capable of absorbing a high
percentage of water.
Diastatic enzymes present in the wheat flour
affect the gassing power of the flour. If flour is deficient in diastase the
final proving of the bread will be unsatisfactory. On the other hand, if too
much diastatic action occurs the bread will still be unsatisfactory having a
strictly crumb.
SALT
Why salt is used in Bread making?
Bread made without salt is insipid and
flavourless; therefore, salt makes bread palatable and appetizing. The quantity
of salt needed is also the right quantity to exercise adequate control over
the speed of yeast action (1 Kg of flour is to 30 gm of salt) If too much salt
is added the bread will be too salty for pleasant eating whilst there will also
be slowing down of yeast action.
Dough with too little salt in them suffers
because of the lack of control over yeast activity and fermentation, allowing
the production of excessive acidity. Sat has a physical effect on the gluten of
flour. In reasonable quantities, it strengthens gluten and increases its
resistance to the general softening effects of fermentation. Too much salt will
completely rob it of its power of holding gas.
If salt is not added at all, then the yeast in
the dough will be able to consume excessive quantities of sugar during its
uncontrolled speedy action during fermentation that there may be insufficient
sugar left at baking time to give perfect crust colour.
Loaves made from dough containing too little
salt will lack volume because the gluten has not been strengthened
sufficiently. The weak gluten strands will break down giving crumbly bread with
large holes in texture.
Dough made with rather too much salt will have
toughened gluten, which will have been insufficiently ripened, producing bread
of subnormal volume and with unsightly holes in the texture.
Yeast
Yeast is living micro organism, the one used
for bread making is known as baker‘s yeast or scientifically as ―Saccharomycees
Cerevisiae.
Like all living things yeast can only work
well between certain temperatures. The ideal and optimum temp, for the working
of yeast is between 780 and 820 F. It works steadily at 760F but rather too
slowly. Above 84°F the speed of fermentation is very great but fermentation of
dough may be undesirable. Above 1400F the proteins in yeast get coagulated, the
cells cease to function and then die. Yeast grows better in a slightly acid
medium.
Yeast may be stored in a refrigerator at 36 to
400 F. If no refrigerator is available, remove from packet and press it into a
clean, dry earthenware vessel. Stand the jar in cold water and cover with a
piece of clean muslin the ends of which dip into water.
For fermentation to occur normally dough must
be made at a suitable temperature. In very cold weather very hot water may be
needed. But under no conditions should the water temperature be above 1100F.
If salt comes into direct contact with yeast
in sufficient concentrations the yeast will be destroyed. This is because salt
will deprive the yeast cells of its water. The salt should be dissolved in
water separate from the yeast solution. When salt is approx 3% of the solution
its effect on yeast is not deadly but merely restrictive.
After making dough at the right temperature it
is essential to see that the dough retains that temperature during
fermentation. If it becomes chilled yeast action will slow down. The dough
should be protected from draught of air especially cold air. They should
preferably be fermented in bowls, which are bad conductors of heat.
Fats
Fats used in small quantities, act as a gluten
lubricant, the strands of which then slide over one another and so appear to
extend more easily, and the dough ripens more readily. The crumb is made
moister, is wither and more even in texture. Crust are thinner and more biscuit
like owing to the shortening properties of fats, and the general build of the
loaf is better. If fats are used in heavy quantities it causes bread to be
clammy and alter its eating qualities.
The undesirable characteristics that would be
apparent when using large quantities of fat can be counteracted by the use of
milk powder. Milk powder imparts bloom to the crust, makes the crumb a delicate
creamy yellow colour but makes the bread crumbly. Where both fat and milk are
used the crumb is creamy, soft, and even in texture crusts are thin and short
eating and the loaf volume very satisfactory.
SUGAR
There must be sufficient sugar in the dough at
the final proving stage from which the yeast can generate gas. Sucrose or
glucose may be added to dough if greater gassing powers are required. Therefore
sugar is needed for final proving to give sufficient volume to the loaf and for
caramelization on the crust of the bread during baking. The quantity of sugar
used in dough should be small. Sugar has a dispersing action on the gluten
of flour and large quantities can completely destroy its tenacity and
extensibility.
BREAD MAKING
There are many satisfactory methods of making
bread given below are details of each of the methods that may be employed for
making bread
I. Straight Dough Method
When the whole of the flour, yeast, salt,
water yeast food and enriching materials are taken and, at one operation,
amalgamated by hand or machine into dough, the method is called the straight
dough method of bread making. It is the least complicate of all dough making
processes. The greater the quantity of yeast the shorter the length of time the
dough will require in which to reach maturity and vice-versa. Excellent bread
can be made by suing extra yeast in a cool dough and adding a little extra
salt. However to obtain good results it is not advisable to speed up
fermentation by use of high temperature and a small quantity of salt.
II. Delayed Salt Method
A simple but very effective variation of the
straight dough process is the delayed salt method. In this the whole of the
ingredients except the salt are mixed together to make the dough which is then
allowed to ferment for approx 30 min the salt is then sieved over the surface
of the dough and thoroughly mixed.
By this process stronger flour are ripened
more quickly and extra flavour is produced in the bread. This is achieved
because no salt is present for most of the fermentation period hence yeast
works more rapidly as do acid forming bacteria present in the dough.
III. FERMENT AND DOUGH
Ferment is a thin liqueur prepared at a
suitable temp containing all the essential food that is required by yeast. It
is generally prepared with only a portion of the water that must eventually be
used to make the finished dough. All he yeast, yeast food and some of the flour
are mixed in to the selected quantity of water and a period to time allowed to
elapse during which the yeast can set to work and reach an active,
vigorous condition before it is called upon to undertake the more serious and
difficult work of fermenting the whole of the flour. Ferment offers yeast a
period to recuperate, so that when the remaining ingredients are added to make
the dough it can get on with the heavier work efficiently. The ferment is usually
allowed to work until it has risen up the vessel in which it is contained to
the fullest limits of the extensibility of the gluten. When this point is
reached and passed the gluten strands break and the mixture subsides. The
ferment is then ready for dough making.
IV. Sponge & Dough
A quarter of the amount of the total flour
needed for the final dough is removed and mixed with sufficient water to make
very a soft dough. Into this mixture a small quantity yeast and salt are mixed
and allowed to ferment slowly over a long period. The time can be regulated by
the amount of yeast used and the temperature at which the sponge is set. When
the sponge has cradled the production of an increased army of yeast cells, the
remaining ingredients are added and the dough is made.
V. Flying Sponge
Instead of making a sponge to lie for many
hours a similar mixture can be prepared with larger quantities of yeast that
are normal for straight dough process, and allowed to lie for an hour. They are
referred to as flying sponges because it takes less time to prepare the dough.
VI. No time dough method
In this method dough is not fermented in the
usual manner. It is allowed to ferment for a short period so the twin function
of fermentation i.e. production of gas and conditioning of gluten are achieved
to some extent by increasing the amount of yeast and by vigorously beating the
dough using mechanical dough mixers so that the dough becomes a little slack
and warm. The dough is then shaped and directly deposited in bread moulds for
final proving before they are baked. It is possible to get a good product using
this method but the product has poor keeping quality and lacks aroma due to
short fermentation time, the gluten and starch are not conditioned to hold
moisture and there is no flavour because flavour producing bi-products of
fermentation are absent because of increased quantity of yeast present. The
bread may have a strong yeast flavour.
Staling of Bakery Products and
Mold Infection
There are three ways in which bakery products
stale. They are, Starch Retrogradation (firming of the crumb), getting infected
by molds and rope;
In simple terms, staling of crumb (firming of
crumb) is the process the starch molecules go through when they shrink upon
cooling. Starch molecule consists of a very long chain of Carbon, Hydrogen and
Oxygen that are stretched out when warm and feel soft. Upon cooling, the chain
shrinks and thus become firm which is called staling. You have probably
experienced that when a stale product is warmed, it becomes soft. The starch
chain has stretched again. Upon cooling, it shrinks again and become firm.
Anti-Staling Ingredients:
1. Emulsifiers. For the past
several years bakers used emulsifiers called bread softeners to produce bread
that will remain soft for a longer period of time. It is added to the dough
during mixing. Some of the more common ones are monoglycrides, calcium stearoyl
lactylate, and sodium stearoyl lactylate. The softening action takes place
after the bread is baked. Also, Potato bread will resist staling because
potatoes act as anti-staling ingredients to some degree. Some anti-staling
ingredients also perform as dough conditioners or dough strengtheners.
2. Enzymes. Enzyme manufacturers
are hard at work on generic engineering and protein engineering producing
enzymes to extend the shelf life of bread many fold. In a paper presented at
the 1999 American Society of Baking's Annual Convention, it was stated that
some of these enzymes are available now. However, since every baker wants to
have one better, enzyme manufacturers will continue to work on developing
better ones. It was also stated that there is a lag time of between 2 and 3
years between the time a specific enzyme is identified and actually having it
available for the baker to use.
Advantages of Using Enzymes instead of
Chemicals.
Since enzymes are produced from natural
ingredients, they will find greater acceptance by the housewife than when
chemicals are used.
3. Mold and Mold Inhibitors.
Sanitation plays a very important role in preventing mold in bread. Mold spores
do not survive baking temperatures. The interior of the loaf, when it comes out
of the oven is about 210 to 212 degrees F. which will destroy any mold
spores which may be present in the dough. Therefore, bread and other bakery
products can only be contaminated after they leave the oven.
Some of the more dangerous areas for mold contamination are storage rooms,
and slicing machine blades which come in direct contact with the interior of
the loaf where there is an abundant supply of food and moisture. Mold spores
also thrive in dark places. You can extend the length of time that it takes
bakery products to mold by several days by using Mold Inhibitors such as
Calcium Propionate for yeast raised doughs and sodium propionate in chemically
leavened products. Propionates are present in many foods, but in very small
amounts. Swiss Cheese, however is an exception. For this reason, Swiss Cheese
rarely molds, unless it is improperly developed. Propionates may be obtained by
the oxidization of propyl alcohol, forming propionic acid. The propionic acid
is in turn combined with other chemicals to form the well known Sodium and
Calcium propionates sold under different Trades Names. Mold Inhibitors react as
an alkaline in doughs, and since yeast doesn't like an alkaline condition,
Mineral Yeast Foods containing monocalcium phosphate are added to the dough.
Monocalcium Phosphate reacts as an acid in doughs therefore counter-acting the
alkaline which is formed by the propionates. Also, vinegar can be used at the
rate of about 1 pint per 100 pounds of flour. Inhibitors are called inhibitors,
because not enough is used to kill the mold. They only retard the growth of
molds. Bread will mold eventually if kept in a warm moist invironment. The
amounts of Calcium Propionates to use in bread varies with the climate, season
of the year, or type of product. Dark Breads require more than White Breads.
For average climates, 2.5 to 3.5 ounces are used per 100 pounds of flour in
White Breads and 4.0 to 5.0 ounces are used in Dark Breads.
Types and Color of Molds. There are many different types of molds
and they have different colors. Mold spores are practically everywhere,
because they are very tiny and are carried in the air. They are so tiny that
they can only be seen under a microscope. Mold Spores are like seeds that
you plant in the garden. When they come in contact with the proper food,
moisture and warmth, the spores produce mold plants which you can see with the
naked eye.
Rope. Rope is a bread disease caused by the bacteria, Bacillus
mesentericus. This disease breaks down the cells of the bread and leaves a
sticky, pasty mass. When the crumb is pressed together and pulled
apart, it will stretch into long, sticky, web-like strands. The product will
have the odor of over-ripe cantalope. The rope bacteria are too small to see
with the naked eye, but they can be seen with a microscope. The bacteria can be
present in the ingredients, especially flour and yeast. Unlike mold, rope
spores are not destroyed by baking temperatures. Calcium propionate, sodium
diacetate or one pint of vinegar per 100 pounds of flour can be used in bread
doughs to increase the shelf life of the product. If the bakery is
contaminated, thorough cleaning with special chemicals will be necessary and/or
the bakery may have to be steam cleaned.
External Bread Faults
No comments:
Post a Comment